大家好,我是小新,我来为大家解答以上问题。最小的合数是多少,最小的合数很多人还不知道,现在让我们一起来看看吧!
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。最小的是4。
合数的性质:
所有大于2的偶数都是合数。
所有大于5的奇数中,个位为5的都是合数。
除0以外,所有个位为0的自然数都是合数。
所有个位为4,6,8的自然数都是合数。
最小的(偶)合数为4,最小的奇合数为9。
每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
规律
任何一个奇数,如果它是合数,都可以分解成两个奇数的乘积。设2n+1是一个合数,将它分解成两个奇数2a+1和2b+1的积(其中a、b都属于非0的自然数),则有
2n+1=(2a+1)(2b+1)=4ab+2(a+b)+1=2(2ab+a+b)+1
可见,任何一个合数根都可以表示为"2ab+a+b",反之,不能表示为"2ab+a+b"的数根,就称为素数根。由此可以得到合数根表。判断一个大奇数属于合数还是素数,只需在合数根表中查找是否存在它的数根就知道了。
扩展资料:
与合数之相对的是质数
质数(prime number)又称素数,有无限个。
质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,
是素数或者不是素数。
如果
为素数,则
要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
参考资料:合数——百度百科
本文到此讲解完毕了,希望对大家有帮助。