您的位置:首页 >知识经验 >

方差分析的基本原理描述正确的是(方差分析的基本原理)

大家好,我是小新,我来为大家解答以上问题。方差分析的基本原理描述正确的是,方差分析的基本原理很多人还不知道,现在让我们一起来看看吧!

方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:

(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。

(2) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb。

总偏差平方和 SSt = SSb + SSw。

组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。

MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。

方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。

在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。通常是比较不同实验条件下样本均值间的差异。例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。

一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。

经过方差分析若拒绝了检验假设,只能说明多个样本总体均值不相等或不全相等。若要得到各组均值间更详细的信息,应在方差分析的基础上进行多个样本均值的两两比较。

方差分析的假定条件为:

(1)各处理条件下的样本是随机的。

(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。

(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。

(4)各处理条件下的样本方差相同,即具有齐效性。

应用条件:

1. 各样本是相互独立的随机样本

2. 各样本均来自正态分布总体

3. 各样本的总体方差相等,即具有方差齐性

4.在不满足正态性时可以用非参数检验

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!