您的位置:首页 >知识经验 >

高一数学log公式大全图解(高一数学log公式大全)

大家好,我是小新,我来为大家解答以上问题。高一数学log公式大全图解,高一数学log公式大全很多人还不知道,现在让我们一起来看看吧!

用^表示乘方,用log(a)(b)表示以a为底,b的对数

  *表示乘号,/表示除号

  定义式:

  若a^n=b(a>0且a≠1)

  则n=log(a)(b)

  基本性质:

  1.a^(log(a)(b))=b

  2.log(a)(MN)=log(a)(M)+log(a)(N);

  3.log(a)(M/N)=log(a)(M)-log(a)(N);

  4.log(a)(M^n)=nlog(a)(M)

  推导

  1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

  2.

  MN=M*N

  由基本性质1(换掉M和N)

  a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]

  由指数的性质

  a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(MN)=log(a)(M)+log(a)(N)

  3.与2类似处理

  MN=M/N

  由基本性质1(换掉M和N)

  a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]

  由指数的性质

  a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(M/N)=log(a)(M)-log(a)(N)

  4.与2类似处理

  M^n=M^n

  由基本性质1(换掉M)

  a^[log(a)(M^n)]={a^[log(a)(M)]}^n

  由指数的性质

  a^[log(a)(M^n)]=a^{[log(a)(M)]*n}

  又因为指数函数是单调函数,所以

  log(a)(M^n)=nlog(a)(M)

  其他性质:

  性质一:换底公式

  log(a)(N)=log(b)(N)/log(b)(a)

  推导如下

  N=a^[log(a)(N)]

  a=b^[log(b)(a)]

  综合两式可得

  N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

  又因为N=b^[log(b)(N)]

  所以

  b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

  所以

  log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}

  所以log(a)(N)=log(b)(N)/log(b)(a)

  性质二:(不知道什么名字)

  log(a^n)(b^m)=m/n*[log(a)(b)]

  推导如下

  由换底公式[lnx是log(e)(x),e称作自然对数的底]

  log(a^n)(b^m)=ln(a^n)/ln(b^n)

  由基本性质4可得

  log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}

  再由换底公式

  log(a^n)(b^m)=m/n*[log(a)(b)]

  --------------------------------------------(性质及推导完)

  公式三:

  log(a)(b)=1/log(b)(a)

  证明如下:

  由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1

  =1/log(b)(a)

  还可变形得:

  log(a)(b)*log(b)(a)=1

  三角函数的和差化积公式

  sinα+sinβ=2sin(α+β)/2·cos(α-β)/2

  sinα-sinβ=2cos(α+β)/2·sin(α-β)/2

  cosα+cosβ=2cos(α+β)/2·cos(α-β)/2

  cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

  三角函数的积化和差公式

  sinα·cosβ=1/2[sin(α+β)+sin(α-β)]

  cosα·sinβ=1/2[sin(α+β)-sin(α-β)]

  cosα·cosβ=1/2[cos(α+β)+cos(α-β)]

  sinα·sinβ=-1/2[cos(α+β)-cos(α-β)]

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!