大家好,我是小新,我来为大家解答以上问题。质数是什么合数是什么 概念,质数是什么很多人还不知道,现在让我们一起来看看吧!
质数(又称为素数、纯数) 1.只有1和它本身这两个因数的自然数叫做质数。还可以说成质数只有1和它本身两个约数。2.素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个正整数的乘积。例如,15=3×5,所以15不是素数; 又如,12 =6×2=4×3,所以12也不是素数。另一方面,13除了等于13×1以 外,不能表示为其它任何两个正整数的乘积,所以13是一个素数。 [编辑本段]质数的公式 一个数,如果只有1和它本身两个因数,这样的数叫做质数,又称素数。例如(10以内) 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。特别声明一点,1既不是质数也不是合数。为什么1不是质数呢?因为如果把1也算作质数的话,那么在分解质因数时,就可以随便添上几个1了。比如30,分解质因数是2*3*5,因为分解质因数是要把一个数写成质数的连乘积,如果把1算作质数的话,那么在这个算式中,就可以随便添上几个1了,分解质因数也就没法分解了。从这个观点可将整数分为三种,一种叫质数,一种叫合成数,还有一个1。(1不是质数,也不是合数)。著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。质数中除2是偶数外,其他都是奇数。2000年前,欧几里德证明了素数有无穷多个。既然有无穷个,那么是否有一个通项公式?两千年来,数论学的一个重要任务,就是寻找一个可以表示全体素数的素数普遍公式和孪生素数普遍公式,为此,人类耗费了巨大的心血。希尔伯特认为,如果有了素数统一的素数普遍公式,那么这些哥德巴赫猜想和孪生素数猜想都可以得到解决。
互质又叫互素。若N个整数的最大公因子是1,则称这N个整数互质。
例如8,10的最大公因子是2,不是1,因此不是整数互质。
7,10,13的最大公因子是1,因此这是整数互质。
5和5不互质,因为5和5的公因数有1、5。
1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。1只有一个因数(所以1既不是质数(素数),也不是合数),无法再找到1和其他数的别的公因数了,所以1和任何数都互质(除0外)。
互质数的写法:如c与m互质,则写作(c,m)=1。
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”
这里所说的“两个数”是指自然数。
“公约数只有 1”,不能误说成“没有公约数。”
判别方法:
(1)两个不同的质数一定是互质数。
例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。
例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(9)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。
85-78=7,7不是78的约数,这两个数是互质数。
(10)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互质数。
(11)减除法。如255与182。
255-182=73,观察知 73182。
182-(73×2)=36,显然 3673。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。
本文到此讲解完毕了,希望对大家有帮助。