您的位置:首页 >知识经验 >

对摺元若蓝(对摺)

大家好,我是小新,我来为大家解答以上问题。对摺元若蓝,对摺很多人还不知道,现在让我们一起来看看吧!

我记得在电视上看到过,如果是借助人的力量,最多只能折8次 .

机器也只能折9次

算算就知道了。如果纸的厚度达到了折叠面的一半就很难折叠了,由此可以推算,如果纸为正方形,边长为a,厚度为h,当折叠一次的时候,折叠边长不变,厚度为2倍的h,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4倍的h,就这也折叠下去,可以推出一个公式:当折叠次数n为偶数次时,折叠边长为l/(2^(0.5*n)),厚度变为2^n*h,当满足n>2/3*(log2(l/h)-1)时无法折叠。根据一般的纸张的状况,厚度大约为0.1mm,边长为1m时,根据以上公式,可以得出n>8.1918时无法折叠,这意味着对于厚度大约为0.1mm,边长为1m的正方形纸,只能折叠8次。在考虑一下更大的纸,厚度不变,边长为1Km时,根据以上的公式,可以得出n>14.8357时无法折叠,即只能折叠14次。因此,对于能折几次与l/h的值有关,如果l/h为无限大,它的对数也为无限大,自然可折叠的次数也为无限大。当然这些都是从理论上得出的结论,至于如此大的纸是否可折,以及如何折就无法论证了。

最后一个问题,如果把一张1mm的纸折100次,可以算一下它的厚度2^100*0.001m=1267650600228229401496703205.376m=1.267e+27m,月球到地球的距离为40万公里左右,粗略为4e+8m,因此远远的超过了月地距离。

从理论上讲,如果纸张的厚度为零,可以进行无数次对折,但是,由于纸张实际厚度的存在,这种理论也就不存在,因为对折后纸张的宽度不能小于等于纸张的厚度,也就是说一张厚度为1mm的纸,对折后纸张的宽度应大于1mm。

所以,一张纸最多能对折多少次实际是一个变数,它取决于纸张的实际厚度与大小。把一张厚度为1mm的纸对折100次,其厚度可以超过地球至月球的距离也只是一个不切合实际的数学理论推理数字

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!